73 research outputs found

    Effects of turbulence and heterogeneous emissions on photochemically active species in the convective boundary layer

    Get PDF
    Photochemistry is studied in a convective atmospheric boundary layer. The essential reactions that account for the ozone formation and depletion are included in the chemical mechanism which, as a consequence, contains a wide range of timescales. The turbulent reacting flow is modeled with a large-eddy simulation (LES) code. The deviations from chemical equilibrium that are caused by turbulent motions are investigated in terms of the intensity of segregation. For the studied cases it is found that the volume-averaged concentrations calculated with the LES code agree well with the concentrations calculated with a box model. The reaction rate between RH (a generic hydrocarbon emitted at the surface) and OH is most strongly affected (3␜lower than in the box model). However, if RH is emitted nonuniformly at the surface, or if the RH-OH reaction rate is increased, the volume-averaged RH destruction by OH may be slowed down by as much as 30␌ompared to a box model. Sensitivity studies showed that the intensity of segregation between RH and OH not only depends on the strength and spatial distribution of the RH emissions but also on the way NO is emitted in the model atmosphere. The results obtained indicate that the assumption that localized emissions of reactive hydrocarbons, for example, isoprene or terpenes, are instantaneously mixed may lead to an underestimation of their atmospheric lifetime

    CUDA Implementation of a Navier-Stokes Solver on Multi-GPU Desktop Platforms for Incompressible Flows

    Get PDF
    Graphics processor units (GPU) that are traditionally designed for graphics rendering have emerged as massively-parallel co-processors to the central processing unit (CPU). Small-footprint desktop supercomputers with hundreds of cores that can deliver teraflops peak performance at the price of conventional workstations have been realized. A computational fluid dynamics (CFD) simulation capability with rapid computational turnaround time has the potential to transform engineering analysis and design optimization procedures. We describe the implementation of a Navier-Stokes solver for incompressible fluid flow using desktop platforms equipped with multi-GPUs. Specifically, NVIDIA’s Compute Unified Device Architecture (CUDA) programming model is used to implement the discretized form of the governing equations. The projection algorithm to solve the incompressible fluid flow equations is divided into distinct CUDA kernels, and a unique implementation that exploits the memory hierarchy of the CUDA programming model is suggested. Using a quad-GPU platform, we observe two orders of magnitude speedup relative to a serial CPU implementation. Our results demonstrate that multi-GPU desktops can serve as a cost-effective small-footprint parallel computing platform to accelerate CFD simulations substantially. I. Introductio

    An hydrodynamic shear instability in stratified disks

    Full text link
    We discuss the possibility that astrophysical accretion disks are dynamically unstable to non-axisymmetric disturbances with characteristic scales much smaller than the vertical scale height. The instability is studied using three methods: one based on the energy integral, which allows the determination of a sufficient condition of stability, one using a WKB approach, which allows the determination of the necessary and sufficient condition for instability and a last one by numerical solution. This linear instability occurs in any inviscid stably stratified differential rotating fluid for rigid, stress-free or periodic boundary conditions, provided the angular velocity Ω\Omega decreases outwards with radius rr. At not too small stratification, its growth rate is a fraction of Ω\Omega. The influence of viscous dissipation and thermal diffusivity on the instability is studied numerically, with emphasis on the case when dlnΩ/dlnr=3/2d \ln \Omega / d \ln r =-3/2 (Keplerian case). Strong stratification and large diffusivity are found to have a stabilizing effect. The corresponding critical stratification and Reynolds number for the onset of the instability in a typical disk are derived. We propose that the spontaneous generation of these linear modes is the source of turbulence in disks, especially in weakly ionized disks.Comment: 19 pages, 13 figures, to appear in A&

    Generation of Vorticity Near Topography: Anticyclones in the Caribbean Sea

    Get PDF
    Mesoscale anticyclonic eddies dominate the sea-surface height variability in the Caribbean Sea. Although it is well established that these anticyclones are formed near the eastern boundary of the Caribbean Sea, which is demarcated by the Lesser Antilles, the source of their anticyclonic vorticity remains unclear. To gain insight into this source, we analyze the fluxes of vorticity into the Caribbean at its eastern boundary using a high-resolution numerical model. We find that the anticyclonic vorticity in the eastern Caribbean Sea predominantly originates from regions where intense ocean currents flow close to the Lesser Antilles. More specifically, St. Lucia and Grenada are hotspots for vorticity generation. The local generation rate scales with the amplitude of the volume transport through the passages between these islands. This finding is in contrast with the view that anticyclonic North Brazil Current (NBC) rings in the Atlantic Ocean are the main source of anticyclonic vorticity in the eastern Caribbean Sea. Our analyses reveal that the direct contribution of the vorticity of the NBC rings is of lesser importance than the local generation. However, the collision of upstream NBC rings with the Lesser Antilles increases the volume transport through the passages into the Caribbean Sea, so that their presence indirectly leads to enhanced local production of anticyclonic vorticity. This process is an example of the importance of vorticity generation near topography, which is ubiquitous in the oceans, and expected to be important whenever currents and steep topography meet

    Direct observations of microscale turbulence and thermohaline structure in the Kuroshio Front

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C08013, doi:10.1029/2011JC007228.Direct observations of microstructure near the Kuroshio Front were conducted in August 2008 and October 2009. These show negative potential vorticity (PV) in the mixed layer south of the front, where directly measured turbulent kinetic energy dissipation rates are an order magnitude larger than predicted by wind-scaling. These elevated dissipation rates scale better with an empirical scaling, which considers local wind and Ekman buoyancy flux driven by downfront wind. Near-zero PV in the thermocline under the Kuroshio mainstream is observed at 200–300 m depth, with dissipation exceeding open ocean thermocline values by factors of 10–100. Overall, the large turbulent dissipation rates measured in the Kuroshio can be categorized into two groups, one characterized by low Richardson number along the Kuroshio Front thermocline, and the other characterized by high stratification away from the Kuroshio mainstream. The former is attributed to mixing by unbalanced frontal ageostrophic flows, and the latter is attributed to internal wave breaking. On average, both groups appear in regions of large horizontal density gradients. Observed thermohaline structure shows low salinity tongues from the surface to over 300 m depth and deep cold tongues, extending upward from 500 to 100 m depth in a narrow (20 km) zone, suggesting down and upwelling driven by geostrophic straining, which is confirmed by Quasigeostrophic-Omega equation solutions. This implies that adiabatic along isopycnal subduction and diabatic diapycnal turbulent mixing acting in tandem at the Kuroshio Front likely contribute to NPIW formation.This study is supported by Sasagawa Scientific Research grant 20-701M (the Japan Science Society), Grant- in-Aid for Young Scientists (B) 20710002, and Excellent Young Researchers Overseas Visit Program 21-7283 awarded to T. Nagai. A. Tandon would like to acknowledge support from NSFPO- 0928138 and ONR N00014-09-1-0196.2013-03-0

    Ocean convergence and the dispersion of flotsam

    Full text link
    Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s−1 and 0.01 ms−1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material
    corecore